在无监督行人重识别中,针对传统非对称度量学习方法无法克服不同视角的数据分布差异问题,提出一种基于分布约束的非对称度量学习无监督行人重识别方法。首先,采用JSTL技术对特征提取网络预训练,得到具有较强鲁棒性的特征表示;然后,提出基于分布约束的非对称度量学习算法,通过在传统非对称度量学习目标函数中引入分布约束,实现不同摄像视角下行人图像非对称特征变换的同时,有效克服了行人数据分布差异导致的识别精确度低的问题;最后,采用梯度下降法优化目标函数,并通过广义特征值问题求解获得最优度量矩阵。基于Market和Duke两个公共数据集的实验表明,该算法的rank1值分别达到57.01%和32.32%,map值分别达到27.91%和16.00%,与传统非对称度量学习算法相比识别性能有明显提升。